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Classical feedback control

Control theory is concerned with methods to manipulate the evolution of
dynamical systems. Feedback is its essential tool, as it allows to monitor the
system and adjust its parameters based on the estimates of its current state.
The essential parts of the control problems are:

The system of interest itself (S)

The controller (C)

The inputs and outputs from and to environment (E), representing
various uncontrolled interaction channels
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Quantum feedback control – the two paradigms

Measurement-based feedback
The feedback action is based on the
outcomes of discrete or continuous
measurement of the system.

Coherent feedback
The system of interest is made to
interact with ancilla quantum
system(s), specially engineered to
drive the system into target state.

Applications
Quantum state engineering

Fighting decoherence

Quantum parameter estimation

Quantum state discrimination
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Unravelling of a quantum operation
Quantum operations
Quantum operation, also known as completely positive trace-preserving map
(CPTP) is the most general type of mapping between quantum states:
%̂→ Λ%̂ =

∑
i L̂i %̂L̂

†
i ;
∑

i L̂
†
i L̂i = 1̂. {L̂i} are known as Kraus operators.

The map Λ may be interpreted as generalized measurement, with index i
representing a certain measurement outcome.

Markovian master equation
When considering time evolution of a quantum state, it is possible to find a
generator of CPTP maps in the following form (the Lindblad equation):
%̂(t + t0) = eLt %̂(t0)⇒ d

dt
%̂ = L%̂ = −ı[Ĥ, %̂] +

∑
i

(
Âi %̂Â

†
i −

1
2 Â
†
i Âi %̂− 1

2 %̂Â
†
i Âi

)
Unravelling
The set of Kraus operators uniquely defines the quantum operation, but not
vice versa. A unitary transform U applied to {L̂i} yields another set
{L̂i (U) = Uij L̂j} which defines exactly the same operation. Fixing a specific
choice of U is known as unravelling of a quantum operation (Carmichael, 1993).

5 / 12



Classical and quantum feedback control
Unravelling-based quantum feedback control

Toy model – control of two-mode atomic BEC
Conclusion and outlook

Hybrid quantum-classical systems
Definition
A hybrid system is a complex of coupled quantum and classical systems (Diosi, 2014;
Blanchard & Jadczyk, 1997) The state of its classical part is described by a classical
random variable σ, while the state of a quantum part is represented by a set of positive
operators %̂(σ) (hybrid densities), so that

∑
σ %̂

(σ) = %̂ yields its total state and
p(σ) = Tr(%̂(σ)) is the probability of the classical system to be in a σ-state.

Master equations
The quantum system may be coupled to additional reservoir. However, its evolution
also affects the classical subsystem, so the Hamiltonian as well as the Lindblad
operators act on a σ-space:
Ĥ =

∑
σ Ĥ

(σ) ⊗ |σ〉〈σ|; Âi =
∑
σ,σ′ L̂

(σ)
i ⊗ |σ〉〈σ

′|
d
dt
ρ̂ = −ı[Ĥ, ρ̂] +

∑
i

(
Âi ρ̂Â

†
i −

1
2 Â
†
i Âi ρ̂− 1

2 ρ̂Â
†
i Âi

)
Tracing over the classical variables yields
d
dt
ρ̂(σ) = −ı[Ĥ(σ), ρ̂(σ)] +

∑
i,σ′

(
L̂
(σ)
i ρ̂(σ

′)L̂
(σ)†
i − 1

2 L̂
(σ′)†
i L̂

(σ′)
i ρ̂(σ) − 1

2 ρ̂
(σ)L̂

(σ′)†
i L̂

(σ′)
i

)
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Idea of unravelling-based feedback

Unlike classical systems, it is possible
to consider almost total control of
quantum system’s interaction with
environment. This can be done by a
(classical) controller, thus making
system a hybrid one. One can also
organize a feedback loop that would
control the unravelling of quantum
system’s interaction with environment.

The feedback loop is closed outside the system, and
yet is capable of modifying the system’s evolution.
This idea utilizes quantum properties of the system
and cannot be implemented in classics.

A similar idea in the context of
adaptive phase measurement:

Martin et al., Nat. Phys. 16, 1046 (2020).
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Interferometric probing of two-mode atomic BEC

Tomilin & Il’ichov, Ann. Phys.
528, 619 (2016)

BEC model
We consider two symmetric localized BEC modes (A and B)
of non-interacting atoms. The most essential part of the
model is the non-zero tunneling rate ω between the modes,
and it is the only term that remains in the interaction picture:

Ĥ = ω

(
â†b̂ + b̂†â

)
.

Decoherence model
One of the BEC modes is probed by a non-resonant light
field. It interacts with the atoms in a dispersive regime,
gaining a phase shift proportional to the number of atoms in
mode A:
d
dt
%̂ = −ı[Ĥ, %̂] +

∑
σ=±

(
2Êσ(ϕ)%̂Ê†σ(ϕ)− Ê

†
σ(ϕ)Êσ(ϕ)%̂− %̂Ê

†
σ(ϕ)Êσ(ϕ)

)
Ê±(ϕ) = 1√

2

(
eıχâ† â ± eıϕ

)
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Introducing unravelling-based control

BEC constitutes a quantum
part (S) of a hybrid system,
while controlled phase shift ϕ
along with the feedback
actuator constitutes its
classical part (C).

Feedback
The feedback action is initiated by each successful
photodetection. It sets the value of phase shift ϕ to one of the
two pre-defined values ϕ±, depending on the type of registered
photodetection, effectively modifying unravelling:(
Ê+(ϕσ1)

Ê−(ϕσ2)

)
= U(ϕσ1 , ϕσ2) ·

(
Ê+(0)

Ê−(0)

)
;

Master equations

Introducing hybrid densities for BEC %̂(±), the following set of
coupled master equations can be obtained:
d
dt
%̂(+) + ı[Ĥ, %̂(+)] =∑
σ=±

(
2Ê+(ϕσ)%̂

(σ)Ê†+(ϕσ)− Ê†σ(ϕ+)Êσ(ϕ+)%̂(+) − %̂(+)Ê†σ(ϕ+)Êσ(ϕ+)

)
,

d
dt
%̂(−) + ı[Ĥ, %̂(−)] =∑
σ=±

(
2Ê−(ϕσ)%̂

(σ)Ê†−(ϕσ)− Ê†σ(ϕ−)Êσ(ϕ−)%̂(−) − %̂(−)Ê†σ(ϕ−)Êσ(ϕ−)

)
.
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Analyzing steady-state distributions
Rapid decoherence
Steady-state solutions of the master equations may be obtained in the rapid
decoherence limit |ω| � 1. The natural basis for solution would be

|n〉 .= |n〉a ⊗ |N − n〉b: %̂ =
∑N

n=0

(
pn|n〉〈n|+ qn|n + 1〉〈n|+ qn|n〉〈n + 1|

)
(the

same relations hold for %̂(±)).

Kullback information
It would be interesting to compare steady-state distributions with and without
feedback. To measure their difference quantitatively we will be using
Kullback-Leibler divergence (Kullback information):
K ≡

∑
n p1(n) · ln p1(n)

p2(n)
.

Specifically, we will be comparing the hybrid distributions p(±)(n) with the
uniform distribution pn = 1

N+1 and the no-feedback distributions:
K (±)(ϕ+, ϕ−) =

∑N
n=0 P

(±)
n (ϕ+, ϕ−) · ln

(
P
(±)
n (ϕ+, ϕ−) · (N + 1)

)
,

K
(±)
fb

(ϕ+, ϕ−) =
∑N

n=0 P
(±)
n (ϕ+, ϕ−) · ln

(
P
(±)
n (ϕ+,ϕ−)

P
(±)
n (

ϕ++ϕ−
2 ,

ϕ++ϕ−
2 )

)
.
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Results

χ = π/20, ω = 0.07,N = 10
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Conclusion and outlook

Results
Suggested a new scheme of quantum feedback control

Demonstrated its ability to control a steady-state of a model two-mode
BEC system
Results published in JETP Lett. 116, 625 (2022)

Directions for further research
Test the same feedback protocol in different setups

Try more elaborate versions of the scheme (e.g. based on a total or
truncated history of events).
%̂(σ) → %̂(σ1...σn)
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